
Learning Program Representations with a
Tree-Structured Transformer

Wenhan Wang†, Kechi Zhang∗, Ge Li∗§, Shangqing Liu†, Anran Li†, Zhi Jin∗§, Yang Liu†
∗Key laboratory of High Confidence Software Technologies (Peking University), Ministry of Education,

Institute of Software, EECS, Peking University, Beijing, China
†Nanyang Technological University, Singapore

Email: wenhan.wang@ntu.edu.sg, zhangkechi@pku.edu.cn, lige@pku.edu.cn, shangqin001@e.ntu.edu.sg,

anran.li@ntu.edu.sg, zhijin@pku.edu.cn, yangliu@ntu.edu.sg

Abstract—Learning vector representations for programs is a
critical step in applying deep learning techniques for program
understanding tasks. Various neural network models are pro-
posed to learn from tree-structured program representations,
e.g., abstract syntax tree (AST) and concrete syntax tree (CST).
However, most neural architectures either fail to capture long-
range dependencies which are ubiquitous in programs, or cannot
learn effective representations for syntax tree nodes, making them
incapable of performing the node-level prediction tasks, e.g.,
bug localization. In this paper, we propose Tree-Transformer,
a novel recursive tree-structured neural network to learn the
vector representations for source codes. We propose a multi-
head attention mechanism to model the dependency between
siblings and parent-children node pairs. Moreover, we propose
a bi-directional propagation strategy to allow node information
passing in two directions, bottom-up and top-down along trees.
In this way, Tree-Transformer can learn the information of the
node features as well as the global contextual information. The
extensive experimental results show that our Tree-Transformer
significantly outperforms the existing tree-based and graph-based
program representation learning approaches in both the tree-level
and node-level prediction tasks.

I. INTRODUCTION

The rapid development of software engineering applications

is incurring enormous growth of code-related data, which

makes “Deep Learning (DL) for Software Engineering (SE)”

particularly important. DL for SE have been improving soft-

ware development in many application fields, such as clone

detection [1], [2], vulnerability detection [3] and code sum-

marization [4], [5]. One major challenge for these DL for SE

applications is how to represent source code to capture their

syntactical and semantic information effectively.

Existing DL for SE works have incorporated syntactic

or semantic structure information, e.g., abstract syntax tree

(AST) and data/control flow into the learning process through

tree-structured neural networks [6]–[9] or graph neural net-

works (GNN) [10]–[12]. The tree-based approaches extract

the syntax tree of the source code and use it as the input to

the learning model, while graph-based methods use various

program analysis techniques to convert the program into a

graph and use it as the input to the model. For example, Mou

et al. [6] propose the tree-based convolutional neural network

(TBCNN) and apply it to the program classification using

§Corresponding authors

ASTs. Allamanis et al. [10] convert programs to graphs by

adding data flow edges to ASTs, and apply the GNNs to the

program graphs to identify misused variables.

Although the existing structured-based techniques have

shown their advantages on various software engineering tasks,

they still have the following limitations. For better illustration,

we summarize the existing structured-based techniques in

Table I. First, many graph-based approaches fail to capture the

long-term dependencies in source code (see column “Global”

in Table I). Since the long-term dependencies are ubiquitous

in programs, e.g., a statement that calls a variable may be

far from the definition of that variable, capturing long-range

dependencies is critical for learning code representations [11],

[13], [14]. However, most GNNs only learn local dependencies

within small neighbourhoods, due to their message-passing

mechanism. Second, many tree-structured neural models for

code cannot learn useful node representations (see column

“Nodes” in Table I). When structured deep learning models

are needed to solve certain tasks, e.g., identifying misused

variables [10] or inferencing variable types [15], we need to

make predictions based on (syntax tree or program graph)

node representations. An effective node representation should

contain the information about the node features as well as its

contextual information. However, since the node information

in many tree-structured neural networks is propagated in a

uni-directional bottom-up manner, these models cannot ob-

tain sufficient context information for low-level tree nodes,

especially for leaf nodes [6], [9], [16]. Third, most existing

structured-based approaches ignore the order information in

programs (see column “Order” in Table I). Since the programs

are highly ordered, e.g., program statements are executed in

specific orders according to their control flow, whereas the

message passing mechanism of GNN is permutation invariant

and cannot capture the order information. Last, the existing

graph-based methods and some tree-based approaches require

additional processing of the syntax tree, which brings large

overhead and loses the original structural information of the

syntax tree (see column “Original” in Table I). For example,

building program graphs often requires experts to utilize

various static analysis techniques [3], [10], and some of which

are not adaptable to different program languages or program

understanding tasks.

248

2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER)

2640-7574/23/$31.00 ©2023 IEEE
DOI 10.1109/SANER56733.2023.00032

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

A
na

ly
si

s,
Ev

ol
ut

io
n

an
d

R
ee

ng
in

ee
rin

g
(S

A
N

ER
) |

 9
78

-1
-6

65
4-

52
78

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SA

N
ER

56
73

3.
20

23
.0

00
32

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

Code Snippet

Decl

TypeDecl BinaryOp

IdentifierType ID Constant

Syntax Tree
(AST, CST,...)

Bottom-Up
Propagation

Bottom-Up
Node States

Top-Down
Propagation

Final Node
Representations

Node-Level
Tasks

Tree-Level
Tasks

Pooling

Fig. 1. The overall pipeline of Tree-Transformer.

To tackle the issues above, in this paper, we propose

Tree-Transformer, a transformer-based approach to learning

program representations for various downstream tasks. To

model the global dependencies for all syntax tree nodes, we

propose a multi-head attention-based bidirectional propagation

method in opposite directions. The bidirectional propagation

consists of two Tree-Transformer units, a bottom-up unit, and

a top-down unit. The bottom-up unit aims to aggregate the

contextual information from leaves to the root node , while

the top-down unit aims to distribute the root information

to its descendants. In this way, each node can capture the

contextual information from all other nodes, which enables

Tree-Transformer to learn long-range dependencies and mean-

ingful node representations. Moreover, we adopt the position

encoding mechanism of Transformer to realize the learning of

sibling order information. Our contributions are summarized

as follows:

• We propose Tree-Transformer, a recursive tree-structured

neural network which formulates the parent-child and sib-

ling relations on the trees with multi-head attention to learn

vector representations for program syntax trees.

• We design a bottom-up and top-down bidirectional informa-

tion propagation method on the Tree-Transformer to capture

the global dependencies between any pair of syntax tree

nodes and enable node-level prediction where previous tree-

structured neural networks fail.

• We have conducted extensive experiments on tree-level and

node-level prediction tasks on program syntax trees. The

experimental results demonstrate that our approach signifi-

cantly outperforms existing tree-structured neural networks,

e.g., Tree-LSTM, and graph neural networks, e.g., GIN.

For the node-level prediction task, we further design a

wrong operator localization and repair task to evaluate the

advantages of Tree-Transformer.

II. MOTIVATING EXAMPLE

Here, we take a specific example to demonstrate the weak-

ness of existing program representation learning approaches on

syntax trees, and the design motivation of Tree-Transformer.

Figure 2 (a) demonstrate a typical abstract syntax tree.

When using graph neural networks on ASTs, node information

is propagated bi-directionally along AST edges (see Figure 2

(b)). Most GNN models adopt the message passing mechanism

TABLE I
A COMPARISON OF EXISTING TREE/GRAPH-BASED PROGRAM

REPRESENTATION LEARNING TECHNIQUES.

Approach Global Nodes Order Original

GNN+AST � � � �
Child-Sum Tree-LSTM [16] � � � �
N-ary Tree-LSTM [16] � � � �
TBCNN [6] � � � �
TreeCaps [9] � � � �
Code2Vec [17] � � � �
Code2Seq [18] � � � �
ASTNN [7] � � � �
Tree-PE [19] � � � �
Code Transformer [5] � � � �
TreeBERT [20] � � � �
Tree-Transformer(Ours) � � � �

GNN+Augmented AST [10] � � � �
Devign [3] � � � �
GREAT [13] � � � �
HPG+HGT [21] � � � �

[22], i.e., each node only receives information from its k-th

local neighborhoods (k is the number of GNN layers). For

example, the dashed box in Figure 2 (b) is the 1-hop local

neighborhood of node “assignment”. Consequently, such GNN

methods lack the capability of capturing longer dependencies.

In most tree-structured neural networks [6], [16], [23],

node information is propagated in a uni-directional bottom-up

fashion (see Figure 2 (c)). This means that each node receives

context information from its descendants. Low-level nodes,

especially leaf nodes, cannot receive context from an adequate

number of nodes, so the representations learned for these

nodes are unlikely to perform well on node-level prediction

tasks. For example, in Figure 2 (c), the leaf node “b” cannot

receive any other information other than itself.

Another issue for GNNs and some tree-structured neural

networks is that they cannot naturally handle the node order

information in ASTs. To alleviate this issue, some works adopt

order-sensitive neural networks [1], [4], [19], [24], which are

mainly built for N-ary trees, especially binary trees. However,

an AST node may have an arbitrary number of children, and

converting ASTs to N-ary trees will destroy the original tree

structure information. Figure 2 (d) shows an AST converted

into a binary tree with left-child right-sibling (adopted by

[19]), and we can obviously see that the original tree structure

249

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

a

a + b

= binary_operator

assignment
a

a + b

=

binary_operator

assignment
a

a + b

= binary_operator

assignment a

a
+

b

=

binary_operator

assignment

(a) (b) (c) (d)

Fig. 2. An example of existing tree-structured and graph neural networks for learning on abstract syntax trees.

is vastly changed.

III. APPROACH

As shown in Figure 1, the Tree-Transformer consists of two

consecutive steps:

• Bottom-up propagation: a bottom-up Tree-Transformer unit

propagates the node messages recursively from children to

parents to obtain the bottom-up states of nodes.

• Top-down propagation: a top-down Tree-Transformer unit

distributes the learned contextual information from the par-

ent node to their children.

After the bi-directional propagation of Tree-Transformer,

the obtained top-down node states can be treated as final node

representations, and further utilized for node-level prediction

tasks (e.g. bug localization). We can also pool the node rep-

resentations learned by Tree-Transformer into a single vector

for tree-level prediction tasks (e.g. program classification). In

the following we will describe the bi-directional propagation

of Tree-Transformer in details.

A. Bottom-up Propagation

Formally, a code snippet C can be parsed into an AST T =
(Vleaf ,Vnon), where Vleaf and Vnon denote the set of AST

leaf nodes and non-leaf nodes respectively. Any node i ∈ Vnon
connects with a set of child nodes ci = {i1, i2, ..., in} where

n is the number of child nodes for i. In ASTs, different nodes

may have different numbers of n. For any node v ∈ T , we

utilize a learnable embedding matrix E to obtain the initial

node embedding ev ∈ R
d, where d is the dimension of node

embeddings.

To gather the children information for the non-leaf node

i, we design the bottom-up propagation based on the multi-

head attention [25]. The architecture of the bottom-up Tree-

Transformer unit is shown in Figure 3 (a).

In multi-head attention, each attention head can be formu-

lated as:

Attention(Q,K, V) = softmax(
QKT

√
d

)V, (1)

Where Q, K, V denote the query, key and value, and d is

the dimension of key vectors.

The bottom-up Tree-Transformer unit obtain the bottom-

up states of nodes in a bottom-up manner similar to recur-

sive neural networks [26], i.e., a node i’s bottom-up state

hi↑ is updated from its initial node embedding ei and its

children’s bottom-up states Hci↑ = (hi1↑,hi2↑, ...,hin↑). If

the child nodes of i are leaf nodes, i.e., {i1, ..., in} ⊆ Vleaf ,

Hci↑ are equal to their leaf node embeddings i.e., Hci↑ =
(ei1 , ei2 , ..., ein).

In a bottom-up Tree-Transformer unit, we first apply a

fraternal self-attention MultiHeadf↑ on Hci↑ to model the

sibling dependency between nodes in ci. In the fraternal

attention, the query, key and value all come from the children

node bottom-up state sequence. Then we use a parental multi-

head attention MultiHeadp to capture the dependency between

i and its children. In the parental attention of i, the query

is its initial node embedding ei, and the key/value are the

output of the fraternal attention on i’s children. The output of

the parental attention is thereafter used to update the bottom-

up state of i. Like the sequential transformer model, each

multi-head attention operation in the Tree-Transformer unit

is followed by a layer normalization and residual connection.

Finally, we use a position-wise feed-forward layer same as

[25] calculates the bottom-up state. Formally, the bottom-up

Tree-Transformer unit calculates hi↑, the bottom-up state of i
by:

H ′
ci↑ = MultiHeadf↑(Hci↑,Hci↑,Hci↑) (2)

H ′
ci↑ = LayerNorm(H ′

ci↑ +Hci↑) (3)

A↑ = MultiHeadp(ei,H
′
ci↑,H

′
ci↑) (4)

A′
↑ = LayerNorm(A+ ei) (5)

hi↑ = LayerNorm(FFN↑(A
′
↑) +A′

↑) (6)

To capture the sibling order information in syntax trees,

we apply position encodings in the fraternal self-attention

MultiHeadf↑. This allows our model to handle sibling orders

for arbitrary trees, while many existing order-sensitive models

on trees [16], [19] only work on trees with a fixed branching

factor (N-ary trees).

Different from the standard position encoding of Trans-

former [25], we adopt the Untied Positional Encod-

ing (TUPE) [27] in the bottom up fraternal attention

MultiHeadf↑. In traditional position encoding, the token em-

beddings and position embedding vectors are added before the

multi-head attention, this makes the model cannot distinguish

token information and position information after these two are

mixed up. The TUPE position encoding unties the position

information from the token information, this enables the

250

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

Self Attn

...

Initial node embedding

Bottom-up state

Top-down state

Add & Norm

Children bottom-up state

Parental Attn

Add & Norm

Feed Forward

Q K V

VK
Q

Children top-down state

Children bottom-up state

Feed Forward

Add & Norm...

...

(a): Bottom-up unit (left) and its detail (right) (b): Top-down unit (left) and its detail (right)

Fig. 3. The detailed architecture of Tree-Transformer units. (a): Bottom-up Tree-Transformer unit. (b): Top-down Tree-Transformer unit.

Transformer model to learn more precise position information

without the interference of input tokens. When we use TUPE

in Tree-Transformer, the output H ′
ci↑ = (z1, z2, ..., zn) in

Equation (2) is computed by:

zm =

n∑

j=1

exp(αmj)∑n
j′=1 exp(αmj′)

(hij↑W
V) (7)

αmj =
1√
2d

(him↑W
Q)(hij↑W

K)T +
1√
2d

(pmUQ)(pjU
K)T

(8)

Where WQ,WK ,W V ∈ R
d×d are query/key/value projec-

tion matrices and UQ,UK ∈ R
d×d are (absolute) position

projection matrices for queries and keys. p ∈ R
d are the fixed

positional embedding vectors.

B. Top-down Propagation
After bottom-up propagation, Tree-transformer obtains the

bottom-up states of all nodes in AST i.e., {hv↑|∀v ∈ V}. Tree-

Transformer then performs the top-down propagation, which

is shown in Figure 3 (b). When the top-down propagation is

finished, each node can obtain the contextual information from

all other nodes, thus enables to capture the global dependency

which is missed in most existing tree/graph-structured neural

networks.
The top-down Tree-Transformer unit uses the state hi↓

of a single node i to simultaneously update its children’s

bottom-up states Hci↑ = {hi1↑,hi2↑, ...,hin↑} into top-down

states Hci↓ = {hi1↓,hi2↓, ...,hin↓}. If i is the root node,

hroot↓ = hroot↑. In the top-down parental attention, we

aim to use a top-down parental attention to pass information

from parent to children. In contrast to the bottom-up parental

attention, in the top-down attention, children states Hci↑ are

used as query, and their parent top-down state hi↓ as key/value.

This is not a common case for multi-head attention, because

when the length of key/value is 1, the softmax function over

keys/values is meaningless (it will always output 1). So we

make a slight change and simplification to the top-down

parental “attention” function. Instead of computing attention

scores, we directly add the top-down states of the parent node

to all its children (this acts similar to a residual connection, the

attention is omitted). The calculation process of the top-down

unit is demonstrated below:

A↓ = LayerNorm(1 · hi↓ +Hc↑) (9)

Hc↓ = LayerNorm(FFN↓(H
′
c↓) +H ′

c↓) (10)

After top-down propagation, Tree-Transformer obtains the

top-down node states {hv↓|∀v ∈ V} which are used as the

final node representations.

By combining bottom-up and top-down propagation, Tree-

Transformer is capable for modeling dependencies between

any node pairs along paths with arbitrary lengths. On the

contrary, although traditional Transformers can capture global

dependencies, they can only model paths with a maximum

length (the number of Transformer layers).

C. Calculating Tree-Level Representation for Program-Level
Prediction

Different from previous (recursive) tree-structured neural

networks, which use the state of root nodes as representation

vector for trees, we use a pooling function over the top-down

states for all nodes {v|v ∈ T } to obtain the final representation

of a tree T . We adopt the global attention pooling function

proposed in [28]:

hT =
∑

v∈T
softmax(W gatehv↓)� hv↓ (11)

W gate is a weight of Rd, � is the element-wise multiplication

and hT can be utilized as the tree-level prediction.

IV. EXPERIMENTAL SETUP

In this section, we first introduce the selected tasks and base-

lines for evaluation, then present the settings for conducting

out experiments.

A. Tasks and Datasets

We select three different tasks to evaluate the learning

capacity of Tree-Transformer on learning tree-level and node-

level representations. The detailed statistics of all datasets are

listed in Table II.

251

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

TABLE II
BASIC STATICTICS OF THE DATASETS WE USE IN THIS PAPER. FOR CODENET DATASETS, THEIR VOCABULARY SIZE IS THE SIZE OF THEIR TOKEN

VOCABULARY PLUS TYPE VOCABULARY.

POJ Java250 Python800 C++1000 C++1400 Wrong Operator Type Inference

Train samples 36,400 45,000 144,000 300,000 252,000 155,628 608,156
Validation samples 5,200 15,000 48,000 100,000 84,000 16,868 24,424
Test samples 10,400 15,000 48,000 100,000 84,000 86,231 27,870

Avg. nodes 189.58 339.33 232.27 376.90 472.04 222.39 652.53
Avg. children per node 1.90 3.05 2.77 3.09 3.12 2.84 3.03
Avg. depth 13.32 17.26 14.48 15.46 16.43 13.28 17.09
Vocabulary 44 222 161 346 346 286,456 100,128 (manually set)

1) Program Classification: In this task, we use Tree-

Transformer to classify program ASTs based on the function-

alities they implemented. We select this task to measure the

ability of Tree-Transformer on learning tree-level representa-

tions. Specifically, we use two different datasets for evaluation.

The first dataset is POJ algorithm classification dataset [6],

which has been widely adopted to evaluate the capability

of program representation models. POJ dataset contains 104

classes of C programs from student programming platforms.

In our experiment, we follow the AST parsing process of

[6]: using pycparser1 to parse the functions to obtain ASTs.

The second one is the CodeNet dataset [29], which contains

over 14M code samples from two open judge platforms. Here

we use the code classification benchmarks, which include

four classification datasets in three programming languages:

Java250, Python800, C++1000, and C++1400. These four

datasets contain programs in 250, 800, 1000, and 1400 classes,

respectively. Since CodeNet has already provided simplified

parse trees (SPT) for those benchmarks, we directly use them

for evaluation. CodeNet SPTs are generated by the ANTLR4

[30] parser with a series of post-processing steps, including

removing internal nodes with only one child. Notice that in

both program classification datasets, the identifier names are

discarded in syntax trees because we aim to perform classifica-

tion on the algorithms alone without the additional information

of identifier names. In open judge platforms, programmers

tend to name identifiers according to the description of the

programming problems, and the naming patterns may bring

additional guidance for the program classifiers.

2) Wrong Operator Localization and Repair: In order

to evaluate Tree-Transformer on node-level prediction, we

propose a novel tree-based wrong operator localization/repair

task. Given the syntax tree of a code snippet with an er-

roneous binary operator (e.g., changing “+” into “-”), this

task requires a model to locate the position of the misused

operator node among all binary operator nodes, and predict

the correct operator for this position. We synthesize a new

dataset from the wrong operator detection dataset, released

by CuBERT [31]. The original dataset is built for the binary

classification between correct and buggy code snippets. To

enable the localization and repair task, we only keep code

snippets with more than one binary operator. On average, each

1https://github.com/eliben/pycparser

code snippet in our dataset contains 5.98 binary operators.

For this dataset, we use tree-sitter2 to parse source code into

concrete syntax trees (CST). CSTs contains more nodes than

ASTs, mainly including brackets and punctuation.

3) Type Inference: In this task, we utilize Tree-

Transformer to classify the type of identifiers in TypeScript,

a dynamically-typed language. Similar to wrong operator

localization/repair, this task can also be seen as a prediction

task on syntax tree nodes. For this task, we employ the

public type inference dataset ManyTypes4TypeScript [32],

which consists of 13,953 public Github projects. We use

the tree-sitter TypeScript parser to parse code snippets into

CSTs and adopt a linear classifier on identifier nodes for

predicting identifier types. We follow the original settings of

ManyTypes4TypeScript and choose the vocabulary of identi-

fier types as 50,000, so this task is a node classification task

with 50,000 classes.

B. Compared Baselines

We compare our approach against existing tree-structured

and graph-structured neural networks. We further compare

with some transformer-based models built for programming

languages. To sum up, we choose the following models as

baselines:

• Tree-structured neural networks. We compare Tree-

Transformer with Tree-LSTM [16], TBCNN [6] and

TreeCaps [9]. As program syntax trees can have arbitrary

branching factors, we use Child-Sum Tree-LSTM as our

baseline. For TreeCaps, we use the variable-to-static (VTS)

version in our experiments.

• Graph neural networks. We choose graph convolutional

network (GCN) [33], graph isomorphism network (GIN)

[34], and gated graph neural network (GGNN) [28] as our

baselines. We evaluate the GNN baselines with two different

sets of inputs: the original syntax tree and syntax tree

augmented with NextToken edges (connect a terminal token

node to the next terminal) [10], [29].

• Transformer-based models. We choose two tree/graph-

based Transformer models as our baselines: Tree-PE [19]

and GREAT [13]. As Tree-PE can only handle N-ary trees,

we convert the input trees to 10-ary trees for program

classification and 15-ary for wrong operator localization and

2https://tree-sitter.github.io/tree-sitter/

252

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

repair. As GREAT usually takes graphs with multiple edge

types as inputs, we use syntax trees with NextToken edges

as its inputs. We also compare our approach with sequential

Transformer models on source code token sequences. Our

sequential baselines including a vanilla Transformer [25]

and pre-trained models: CodeBERT [35] and C-BERT [36].

Different from tree/graph-based approaches, in sequence-

based approaches, we follow previous works [29] and use

the token sequences of the original code, which means the

identifier names are kept.

C. Experimental Settings

1) General Settings: We set the Tree-Transformer node

embedding dimension to 128 for POJ and 256 for other

datasets. The number of attention heads is set to 4. We train our

models with an Adam optimizer with a default learning rate

of 0.002 and a warm-up phase of 2,000 steps. We implement

Tree-Transformer with DGL [37] to enable efficient batching

,and ran our experiments on a NVIDIA RTX 8000 GPU with

48GB memory.

2) Settings for Program Classification: For the POJ dataset,

we follow previous works [9] and split the dataset into

train/validation/test sets by the ratio of 7:1:2. For CodeNet,

the train/validation/test ratio is 3:1:1. Since each node in

CodeNet SPTs contains two parts of information: parsing rules

and tokens, thus we concatenate the token embeddings and

the parsing rule embeddings as the initial node embeddings.

For GNN baselines, we adopt the same pooling function as

Tree-Transformer. For Tree-LSTM, we employ two different

approaches to acquire the representation vectors for trees:

using the root node’s hidden state or using the same attention

pooling as our model. For TreeCaps, we follow its original

setting and use its “code capsule” to compute the probabilities

of output classes.

3) Settings for Wrong Operator Localization and Repair:
Locating the wrong operator node is achieved by learning

a pointer pointing to a single node in a tree, which is the

same as previous works on localization and repair tasks [13],

[38]. Unlike [38], which also uses a pointer for the re-

pair task, We treat this step as a node classification task:

a classifier predicts the label of the repair operator within

the set of all binary operators. In our dataset, the operator

set OPs = {−,+, ∗,%, >,==, or, <, /, and, >=, <=, ! =
, in, is, is not, not in}. We sum up the localization loss and the

repair loss as the training loss for this task.

In this task, all the wrong operator nodes are located on

the leaf nodes in CSTs. However, the tree-structured neural

networks, e.g., Tree-LSTM, follow a bottom-up manner to

propagate information, which means that the leaf nodes cannot

receive the information from other nodes and cannot learn

well-contextualized node representations. Thus we directly

omit these tree-structured baselines and only utilize graph-

based models for comparison.

4) Settings for Type Inference: The original Many-

Types4TyprScript dataset is created for token-base type in-

ference on code token sequences, which cannot be directly

converted to tree-base data without any data loss. In the parsing

step, we remove code snippets that cannot be correctly parsed

by tree-sitter and CSTs with larger than 5000 nodes, thus

resulting in a slightly smaller dataset than the original one. The

vocabulary size for CST terminal token nodes is manually set

to 100,000 for this task. Similar to wrong operator localization

and repair, we only compare with baselines that are capable

of node-level predictions.

V. EXPERIMENTAL RESULTS

In this section, we present and analyze our experiment

results to address the following research questions:

• RQ1: How does Tree-Transformer perform on syntax

tree-level prediction tasks?

• RQ2: How does Tree-Transformer perform on node-level

prediction tasks?

• RQ3: How does each component of Tree-Transformer

contribute to our performances?

A. RQ1: How does Tree-Transformer perform on syntax tree-
level prediction tasks?

Table III shows the classification results on CodeNet

and POJ datasets. We can see that on all five datasets,

Tree-Transformer outperforms the tree-structured and graph-

structured baselines by a significant margin. This highlights

the effectiveness of modeling global dependencies along trees

with multi-head attention. When using the attention pooling

the same as Tree-Transformer, Tree-LSTM does not show

significant improvements, suggesting that our improvements

over Tree-LSTM mainly come from our model design rather

than the pooling strategy. Moreover, Tree-Transformer outper-

forms all of our graph-structured baselines (including GNNs

and GREAT), even when they are integrated with additional

NextToken edges. Although adding additional edges to syntax

trees (see rows “GNN+Graph”) can marginally improve the

performances of program classification, it still cannot over-

come the inherent weaknesses of graph-based models. We

also include a heterogeneous graph-based model (HPG+HGT)

[21] for comparison. Although HPG+HGT outperforms (ho-

mogeneous) GNN baselines by introducing additional node

and edge type information, it still cannot compete against our

Tree-Transformer.

From the results, we notice that Tree-LSTM outperforms

the GNN baselines when the given inputs are trees. Although

the research interest in tree-structured neural networks is

undermined by the advance of GNNs, tree-structured mod-

els are still competitive and should not be ignored. When

compared with large-scale pre-trained Transformers, we find

that Tree-Transformer is still competitive. The average ac-

curacies of C-BERT and CodeBERT on CodeNet is lower

than ours, although for some datasets, for example, Java250

and Python800, they have a higher performance than ours.

Compared with pre-trained baselines, which require massive

data for pre-training, Tree-Transformer is much more light-

weight, and this further confirms the effectiveness of our

model.

253

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

TABLE III
PROGRAM CLASSIFICATION ACCURACY(%) ON CODENET AND POJ DATASETS.

Java250 Python800 C++1000 C++1400 Overall POJ

GCN 89.06 91.81 93.54 92.89 91.83 93.93
GIN 90.76 93.17 95.54 94.50 93.49 95.76
GGNN 88.46 89.92 89.75 88.01 89.04 93.22

Tree-LSTM (root) 93.19 93.95 95.79 95.20 94.53 94.70
Tree-LSTM (attention) 93.71 93.83 95.79 95.24 94.64 94.95
TBCNN 90.32 91.10 93.17 93.03 91.91 94.15
TreeCaps 91.42 90.26 93.55 93.24 92.12 95.88
Tree-PE [19] 91.65 91.11 92.30 88.97 91.01 94.19

GREAT 93.15 93.30 93.46 93.72 93.41 92.64
GCN+Graph [29] 92.70 93.82 95.76 95.26 94.39 95.57
GIN+Graph [29] 93.26 94.17 96.34 95.95 94.93 95.96
GGNN+Graph 93.61 92.23 91.72 92.48 92.51 94.80

HPG+HGT [21] 3 93.95 94.99 - - - -

Tree-Transformer (Ours) 95.32 95.30 97.11 96.98 96.18 96.12

Transformer 93.49 93.99 89.93 67.87 86.32 88.13
C-BERT [29] 97.40 97.09 93.79 91.83 95.03 -
CodeBERT 96.47 97.41 86.13 83.05 90.77 98.40

An interesting finding on pre-trained models is that both

pre-trained baselines perform very well on Java250 and

Python800, but their accuracies are low on CodeNet C++

datasets, even though these two models are pre-trained on

completely different corpora (CodeBERT is pre-trained on the

CodeSearchNet dataset [39] (without C/C++ code snippets),

while C-BERT is pre-trained on Github C repositories). To

further understand this unexpected phenomenon, we make

an analysis of CodeNet datasets based on token sequences,

which is demonstrated in Table IV. In this table, we use code

token sequences tokenized by the CodeBERT BPE tokenizer.

We first list the lengths of token sequences, and it shows

that the token sequences for C++ datasets are longer than

Java/Python datasets. This brings a common weakness of most

existing Transformer-based pre-trained models: these models

require a fixed maximum input length due to the limitation of

memory cost. For example, the maximum sequence length of

CodeBERT and C-BERT is 512, which is shorter than the av-

erage sequence length of the C++1400 dataset. The overlength

inputs are cropped to the maximum length and may harm the

model from understanding the program’s original semantics.

We also make an analysis of the differences between each

program classes at the token level. We treat the programs

from the same class as a single text snippet by concatenating

them and calculate the TF-IDF distances between every two

classes. The average TF-IDF cosine similarity between all

classes is reported in Table IV. We can see that the average

similarity scores of C++ datasets are higher, which means that

in these datasets, programs from different classes are more

similar at the token level compared to Java/Python datasets. As

Transformer-based pre-trained models are conducted on token

sequences, this ”similarity” of tokens may hinder the models

from learning the differences between program functionalities.

In fact, as previous works [40] have pointed out, Transformer

models for code can be more sensitive to identifiers than

logical structures, which further supports our findings.

TABLE IV
STATISTICS OF CODENET DATASETS IN TOKENIZED SEQUENCES.

Java250 Python800 C++1000 C++1400

Sequence length 444.5 207.8 488.8 583.2
Average TF-IDF 0.722 0.420 0.787 0.754

B. RQ2: How does Tree-Transformer perform on node-level
prediction tasks?

Table V demonstrates the results of wrong operator local-

ization and repair. We report two accuracy metrics: localiza-

tion accuracy and joint accuracy of localization and repair.

We can find that compared with graph-structured baselines,

Tree-Transformer achieves significantly better performance,

especially on the joint loc&rep accuracy. Our model gains an

improvement of 7% on joint accuracy compared with the best-

performing baseline GIN. This indicates that our bi-directional

propagation enables the model to learn effective node repre-

sentations for node-level prediction tasks. The Transformer-

based model for trees [19] performs poorly on this task, its

accuracies lower than all GNN baselines. This suggests that

changing the original tree structures by converting arbitrary

trees to N-ary trees is harmful to node-level prediction. In the

wrong operator dataset, the branching factor of 10% syntax

trees is larger than 15, so the structures of these trees are

changed for this baseline.

In this task, the pre-trained model CodeBERT outperforms

Tree-Transformer and achieves extremely high accuracy on

both localization and repair. However, we must be aware

that CodeBERT requires a large model size and pre-training

on over 8 million data samples (while our model can be

trained on a single GPU and does not require pre-training). A

3HPG [21] can only build program graphs for Java and Python.

254

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

previous work [31] has suggested that large pre-trained models

can significantly outperform trained-from-scratch models and

achieve very high results on synthesized localization & repair

tasks (e.g., variable misuse [10], [38] and our WrongOp task).

We believe this is because those pre-trained models excel in

capturing the ”naturalness” of input code from a large amount

of data, so they easily recognize synthesized bugs that are

”unnatural.”

TABLE V
THE ACCURACY OF WRONG OPERATOR LOCALIZATION AND REPAIR.

Model Loc Acc(%) Loc & Rep Acc (%)

GCN 84.97 60.44
GIN 85.69 61.61
GGNN 84.77 58.71
Tree-PE [19] 78.65 53.99

GREAT 85.43 59.32
GCN+Graph 86.37 65.05
GIN+Graph 86.48 64.66
GGNN+Graph 84.11 61.01

Tree-Transformer (Ours) 88.26 68.58

Transformer 73.13 45.22
CodeBERT 94.61 83.89

The results for type inference are shown in Table VI. Tree-

Transformer outperforms the GNN baselines with a large gap.

This further demonstrates the strength of Tree-Transformer,

as some predictions on variable types require long-dependency

reasoning. For example, a user-defined type could be used long

after its definition code block. Similar to the wrong operator

dataset, Tree-Transformer outperforms vanilla Transformer on

this type inference dataset, but the results are lower than

the pre-trained model CodeBERT. The large performance

gap between trained-from-scratch Transformer and pre-trained

Transformer indicates that our Tree-Transformer may also

benefit from pre-training techniques and further improve its

performance. We will leave this as our future work.

C. RQ3: How does each component of Tree-Transformer
contribute to our performances?

We perform an ablation study to further investigate the

impact of each component in Tree-Transformer. Table VII

shows the results of Tree-Transformer when removing each

component on program classification (Java250) and wrong

operator localization. In this table, “-” means removing a

certain component from Tree-Transformer. The experiment

of removing top-down propagation on wrong operator lo-

calization is omitted because leaf nodes cannot receive the

information from their parent nodes only through bottom-

up propagation. Note that after removing fraternal attention,

the position encoding within it is also removed accordingly.

To separate position encodings from the fraternal attention,

we add a new variant of Tree-Transformer where fraternal

attention is removed, and position embedding vectors are

added before the bottom-up parental attention.
From the results, first, we can see that our top-down propa-

gation is succinct and powerful on both tasks. Without it, the

TABLE VI
THE ACCURACY OF TYPE INFERENCE ON MANYTYPES4TYPESCRIPT CST

DATA.

Model Accuracy(%)

GCN 46.35
GIN 47.40
GGNN 45.47
Tree-PE [19] 51.71

GREAT 52.45
GCN+Graph 46.75
GIN+Graph 47.91
GGNN+Graph 45.71

Tree-Transformer (Ours) 54.78

Transformer 49.54
CodeBERT 65.76

TABLE VII
ABLATION STUDY ON PROGRAM CLASSIFICATION (JAVA250) AND WRONG

OPERATOR LOCALIZATION AND REPAIR.

Model Java250
WrongOp

Loc Loc & Rep

Tree-Transformer 95.32 88.26 68.58
-position encoding 94.99 85.78 63.32
-fraternal attention 94.66 86.26 63.91
-fraternal attention +position encoding 94.95 87.18 65.64
-top-down propagation 94.01 N/A N/A

performance drops greatly, which indicates that it is effective

on both node-level prediction and tree-level classification

tasks. Furthermore, even with only bottom-up propagation,

Tree-Transformer still outperforms tree-structured baselines,

showing that our attention-based neural network unit is effec-

tive. Moreover, modeling fraternal dependencies and sibling

positions also contribute to both tasks. However, the effect

of position encoding in Java250 is less significant than in

WrongOp: removing position encodings in Java250 hardly

affects the classification accuracy. This may indicate that in

our program classification datasets, sibling order information

is not essential for distinguishing programs of different classes.

On the contrary, sibling orders in wrong operator localization

are more important because locating wrong operators requires

reasoning on relationships between operators and operands,

and sibling dependency is a key part of these relationships.

An interesting finding is that only removing position encod-

ings (keeping the fraternal attention) results in worse accura-

cies than jointly removing position encodings and fraternal

attention on the WrongOp dataset. Because fraternal attention

alone cannot learn from the sibling order information, adding

this attention without given position information will deepen

the model and make Tree-Transformer harder to train. If we

keep the position encoding and only remove the fraternal atten-

tion, the results are still lower than the complete model. This

suggests that position encoding works better when integrated

with fraternal attention in Tree-Transformer.

VI. DISCUSSION

In this section, we mainly discuss the strengths and

limitations of Tree-Transformer compared with existing

255

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

Transformer-for-code models, mainly from the perspective of

efficiency. We also discuss the threats to validity of our work.

A. Strengths

The model structure of our Tree-Transformer is largely

different from existing Transformer-based syntax tree mod-

eling approaches: Tree-Transformer basically follows the tree-

structured recursive formula [26], [41], while existing ap-

proaches [5], [20], [42], [43] usually uses a sequential Trans-

former with node traversal sequences as inputs.

A main advantage of Tree-Transformer over sequential

Transformer-based approaches is that Tree-Transformer can

handle larger inputs. The core of Transformer is its multi-head

attention mechanism. In a sequential Transformer encoder, the

model performs self-attention on its input sequence. For a

program syntax tree T with N nodes, the time and memory

cost of self-attention on sequential Transformers is O(N2).
This means that sequential Transformer on long sequences

may take up a large amount of memory. To avoid out-of-

memory problems, existing sequential approaches often set

a not-so-long limit for their inputs, making them difficult to

deal with long programs. For example, TPTrans [42] assign a

maximum number 512 for input CST leaf nodes. AST-Trans

[43] requires the input ASTs not larger than 200 nodes. On

the other hand, in Tree-Transformer, there are two multi-head

attentions: the fraternal self-attention between siblings and a

parent-children between a group of siblings and their mutual

parent. Suppose the branching factor of T is k, then the mem-

ory cost of fraternal attention is O(k2), and for parent-children

attention is O(k). In most syntax trees, k � N , so the memory

cost of Tree-Transformer is significantly less than sequential

Transformer. This allows Tree-Transformer to model syntax

trees larger than the capacity of sequential Transformer-based

approaches. For example, we do not apply any limitations

on the syntax tree size for program classification and wrong

operator localization/repair.

B. Limitations

The main limitation of Tree-Transformer, along with other

recursive tree-structured models (e.g., Tree-LSTM), is that it

runs slower than sequential Transformers or GNNs. In Tree-

Transformer, before we update a node’s state in the bottom-up

pass, we must update all its children first and vice versa in

the top-down pass. So for a syntax tree T with depth D, the

bottom-up/top-down Tree-Transformer unit must run for 2D
timesteps before we get the final node representations for T .

However, in sequential Transformer or GNNs with L layers,

their Transformer/message passing unit needs to run for L
times. For most program syntax trees and Transformer/GNN

models, L < 2D (e.g., our GREAT baseline only consists of 6

layers), so generally, the time efficiency of Tree-Transformer

is lower than sequential Transformer/GNNs.

C. Experiments on Efficiency

To make a clear demonstration of the efficiency of Tree-

Transformer, we compare the running time and memory

occupation of Tree-Transformer with three baseline models:

GIN, vanilla Transformer, and CodeBERT on the Java250

dataset. The results are shown in Table VIII. We can generally

find out that the memory efficiency of Tree-Transformer is

much higher than Transformer/GIN, while its time efficiency is

lower. When the batch size is 256, which is the default setting

in our experiments, the training time of Tree-Transformer is

about four times as GIN and three times as Transformer,

which is totally acceptable. As for the memory usage, Tree-

Transformer only takes around 1
5 of vanilla Transformer.

When we increase the batch size to 1024, vanilla Transformer

encounters the out-of-memory problem (we were using a

GPU with 48GB memory), while Tree-Transformer only uses

about 18GB memory. Generally, the memory effectiveness of

Tree-Transformer makes it suitable for large input trees and

large training batch sizes. As for the large pre-trained model

CodeBERT, its training(fine-tuning) and inference time are

both much longer than small-sized models, and its memory

cost is higher even with a much smaller batch size.

D. Threats to Validity

The first threat involves the data processing step, which is

the parsing of syntax trees in our experiments. To reduce this

threat, we choose open source parsers which are evaluated

by previous researchers on different downstream tasks. For

the off-the-shelf syntax trees provided by the dataset creators,

they are also parsed from widely-used parsers.

Another threat relates to the datasets we used in this

paper. In the type inference task, we adopt the public Many-

Types4TypeScript benchmark, but filtered out some data sam-

ples to suit our experiments. This makes the dataset in this

paper different from the public version. To reduce this threat,

we ran all baseline approaches on the same filtered dataset as

our Tree-Transformer. We will also make our preprocessing

pipeline and preprocessed dataset public.

VII. RELATED WORK

In this section, we first briefly introduce existing tree-

structured neural networks, then summarize their application

in software engineering along with other structure-based deep

learning approaches for code.

A. Tree-Structured Neural Networks

There has been long research interest in applying deep neu-

ral networks to tree-structured data. The earliest work on tree-

structured neural networks is recursive neural network [26],

[41]. Recursive neural networks calculate the representation

of a tree by accumulating node representations in a bottom-up

manner. The recursive architecture further inspires later works

[8], [16], [23], [44]. For example, Tai et al. [16] proposed

Tree-LSTM, which uses an LSTM unit to replace the fully-

connect neural network unit in recursive neural networks.

Ahmed et al. [23] proposed a recursive Transformer by per-

forming self-attention on siblings. Although many classical

tree-structured neural networks are proposed in the natural

language processing community, in recent years, software

256

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII
COMPARISON OF TIME AND MEMORY EFFICIENCY BETWEEN TREE-TRANSFORMER, SEQUENTIAL TRANSFORMER AND GIN.

GIN Transformer Tree-Transformer CodeBERT
Batch size 256 1024 256 1024 256 1024 32 64

Training time (s/batch) 0.13 0.45 0.42 - 1.09 2.53 0.61 1.17
Training time (s/epoch) 23 20 73 - 187 111 864 824
Inference time (s/batch) 0.05 0.17 0.12 - 0.51 0.86 0.21 0.41
Inference time (s/epoch) 2 2 7 - 30 13 99 97
Memory (MB) 15748 24348 36120 OOM 5729 18779 23821 46630

engineering researchers have started to propose tree-structured

models based on the programming language domain. For

example, Mou et al. [6] proposed tree-based convolutional

neural network (TBCNN). Bui et al. [9] further proposed

TreeCaps, which extends TBCNN with capsule networks [45]

and achieved state-of-the-art results on program classification.

Wang et al. [8] further extended Tree-LSTM with different

neural submodules for children state aggregation.

B. Modeling Code Structures with Neural Networks

The above tree-structured neural networks have been widely

applied in various software engineering tasks, such as code

classification [6], [7], [9], code summarization [4], [9], code

search [24], etc. In recent years, as the popularity of graph

neural networks grows, researchers started to apply GNN on

programs. Some works directly use GNNs to model program

syntax trees [29], [46], while other works tried to augment

syntax trees with additional hand-crafted edges [2], [10] or

leverage control-flow/data-flow graphs [3], [24], [47]–[49].

Some other works tried to extract substructures from syntax

trees, and use sequential (or partly sequential) neural networks

to model code substructures. For example, Zhang et al. [7]

proposed ASTNN, which decomposes an AST into a sequence

of subtrees following the order of statements, and combines

GRU and recursive neural network to encode the subtree

sequence. Alon et al. [17], [18] sample paths between nodes

from ASTs, and use feed-forward neural networks/LSTM to

encode the set of AST paths.

Recently there have been some attempts to integrate the

tree/graph structures of code into the popular Transformer

model. Most of these works manipulate the attention mech-

anism or position encoding of Transformers to provide the

model with structural information [5], [19], [42], [50]. For

example, Shiv et al. [19] proposed a novel position encoding

technique to extend Transformers to N-ary trees, and evaluate

their approach on a code translation task. Hellendoorn et al.

[13] proposed Graph Relational Embedding Attention Trans-

formers (GREAT) to model program graphs. Guo et al. [51]

proposed a pre-trained model GraphCodeBERT, which inte-

grates simplified data flow structure into code token sequences.

Zügner et al. [5] proposed Code Transformer, which integrates

multiple distance metrics of AST nodes into the relative

position encoding of Transformers. Jiang et al. [20] proposed

TreeBERT, a Transformer-based pre-trained model on ASTs.

TreeBERT extracts paths from ASTs as the inputs to the

transformer model, and proposed a novel tree-based position

encoding for nodes. Peng et al. [42] proposed TPTrans, which

integrates the information of paths in CSTs by encoding the

paths as the position encodings in a Transformer model. Guo

et al. [52] proposed a pre-trained model Unixcoder, which

uses the structure information of ASTs in the pre-training

stage. However, the tree structure is not used in the fine-

tuning/inference stage.

VIII. CONCLUTION

In this paper, we propose a novel tree-structured network:

Tree-Transformer for program representation learning. Tree-

Transformer leverages the powerful multi-head attention in

two dimensions: fraternal and parental, to capture the de-

pendencies between siblings and ancestors/predecessors on

trees. Motivated by the neglect of the global dependency

among nodes in current recursive-structured neural networks

or GNNs, we propose bidirectional information propagation

along trees and extend existing recursive neural network

architecture with a novel top-down unit. Experiments on

three different tasks: program classification, wrong operator

localization&repair, and type inference have demonstrated

the effectiveness of our proposed approach. In the future,

we would like to further explore the potential of our Tree-

Transformer with pre-training techniques. Another possible

improvement is to integrate Tree-Transformer with GNNs so

that the model can simultaneously handle syntactic structure

information and control/data flows.

ACKNOWLEDGMENTS

This research is partially supported by the National

Research Foundation, Prime Ministers Office, Singapore,

under its National Cybersecurity R&D Program (Award

No. NRF2018NCR-NCR005-0001), NRF Investigatorship

NRF-NRFI06-2020-0001, the National Research Foundation

through its National Satellite of Excellence in Trustworthy

Software Systems (NSOE-TSS) project under the National

Cybersecurity R&D (NCR) Grant award no. NRF2018NCR-

NSOE003-0001, the National Research Foundation Singapore

and DSO National Laboratories under the AI Singapore Pro-

gramme (AISG Award No: AISG2-RP-2020-019).

REFERENCES

[1] H.-H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code,” in Proceedings of the 26th International Joint Conference
on Artificial Intelligence, 2017, pp. 3034–3040.

257

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

[2] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 261–271.

[3] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: effective vulner-
ability identification by learning comprehensive program semantics via
graph neural networks,” in Advances in Neural Information Processing
Systems 2019. Neural Information Processing Systems (NIPS), 2019.

[4] Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,
“Improving automatic source code summarization via deep reinforce-
ment learning,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 397–407.

[5] D. Zügner, T. Kirschstein, M. Catasta, J. Leskovec, and S. Günnemann,
“Language-agnostic representation learning of source code from struc-
ture and context,” in International Conference on Learning Representa-
tions, 2021.

[6] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[7] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in 2019
IEEE/ACM 41st International Conference on Software Engineering.
IEEE, 2019, pp. 783–794.

[8] W. Wang, G. Li, S. Shen, X. Xia, and Z. Jin, “Modular tree network
for source code representation learning,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 4, pp. 1–23, 2020.

[9] N. D. Bui, Y. Yu, and L. Jiang, “Treecaps: Tree-based capsule networks
for source code processing,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 1, 2021, pp. 30–38.

[10] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” in International Conference on Learning
Representations, 2018.

[11] S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Retrieval-augmented
generation for code summarization via hybrid gnn,” in International
Conference on Learning Representations, 2021.

[12] P. Fernandes, M. Allamanis, and M. Brockschmidt, “Structured neural
summarization,” in International Conference on Learning Representa-
tions, 2019.

[13] V. J. Hellendoorn, C. Sutton, R. Singh, P. Maniatis, and D. Bieber,
“Global relational models of source code,” in International conference
on learning representations, 2020.

[14] S. Liu, X. Xie, L. Ma, J. Siow, and Y. Liu, “Graphsearchnet: Enhancing
gnns via capturing global dependency for semantic code search,” arXiv
preprint arXiv:2111.02671, 2021.

[15] M. Allamanis, E. T. Barr, S. Ducousso, and Z. Gao, “Typilus: Neural
type hints,” in Proceedings of the 41st acm sigplan conference on
programming language design and implementation, 2020, pp. 91–105.

[16] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic rep-
resentations from tree-structured long short-term memory networks,”
in Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), 2015, pp.
1556–1566.

[17] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[18] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” in International
Conference on Learning Representations, 2019.

[19] V. Shiv and C. Quirk, “Novel positional encodings to enable tree-based
transformers,” Advances in Neural Information Processing Systems,
vol. 32, pp. 12 081–12 091, 2019.

[20] X. Jiang, Z. Zheng, C. Lyu, L. Li, and L. Lyu, “Treebert: A tree-based
pre-trained model for programming language,” in UAI 2021: Uncertainty
in Artificial Intelligence, 2021.

[21] K. Zhang, W. Wang, H. Zhang, G. Li, and Z. Jin, “Learning to
represent programs with heterogeneous graphs,” in 2022 IEEE/ACM 30th
International Conference on Program Comprehension (ICPC). IEEE,
2022, pp. 378–389.

[22] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in International
conference on machine learning. PMLR, 2017, pp. 1263–1272.

[23] M. Ahmed, M. R. Samee, and R. E. Mercer, “You only need attention
to traverse trees,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019, pp. 316–322.

[24] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. Yu, “Multi-
modal attention network learning for semantic source code retrieval,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 13–25.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[26] C. Goller and A. Kuchler, “Learning task-dependent distributed rep-
resentations by backpropagation through structure,” in Proceedings of
International Conference on Neural Networks (ICNN’96), vol. 1. IEEE,
1996, pp. 347–352.

[27] G. Ke, D. He, and T.-Y. Liu, “Rethinking positional encoding in
language pre-training,” in International Conference on Learning Rep-
resentations, 2021.

[28] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” in International Conference on Learning
Representations, 2016.

[29] R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov,
J. Dolby, J. Chen, M. Choudhury, L. Decker et al., “Codenet: A large-
scale ai for code dataset for learning a diversity of coding tasks,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021.

[30] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[31] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and
evaluating contextual embedding of source code,” in International
Conference on Machine Learning. PMLR, 2020, pp. 5110–5121.

[32] K. Jesse and P. T. Devanbu, “Manytypes4typescript: A comprehen-
sive typescript dataset for sequence-based type inference,” in 2022
IEEE/ACM 19th International Conference on Mining Software Reposi-
tories (MSR), 2022, pp. 294–298.

[33] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017.

[34] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” in International Conference on Learning Represen-
tations, 2019.

[35] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[36] L. Buratti, S. Pujar, M. Bornea, S. McCarley, Y. Zheng, G. Rossiello,
A. Morari, J. Laredo, V. Thost, Y. Zhuang et al., “Exploring soft-
ware naturalness through neural language models,” arXiv preprint
arXiv:2006.12641, 2020.

[37] M. Y. Wang, “Deep graph library: Towards efficient and scalable deep
learning on graphs,” in ICLR workshop on representation learning on
graphs and manifolds, 2019.

[38] M. Vasic, A. Kanade, P. Maniatis, D. Bieber, and R. Singh, “Neural pro-
gram repair by jointly learning to localize and repair,” in International
Conference on Learning Representations, 2019.

[39] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

[40] A. N. Sontakke, M. Patwardhan, L. Vig, R. K. Medicherla, R. Naik,
and G. Shroff, “Code summarization: Do transformers really understand
code?” in Deep Learning for Code Workshop, 2022.

[41] R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D. Manning, “Parsing natural
scenes and natural language with recursive neural networks,” in ICML,
2011.

[42] H. Peng, G. Li, W. Wang, Y. Zhao, and Z. Jin, “Integrating tree path
in transformer for code representation,” in Thirty-Fifth Conference on
Neural Information Processing Systems, 2021.

[43] Z. Tang, X. Shen, C. Li, J. Ge, L. Huang, Z. Zhu, and B. Luo, “Ast-trans:
Code summarization with efficient tree-structured attention,” in 2022
IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022, pp. 150–162.

[44] Z. Teng and Y. Zhang, “Head-lexicalized bidirectional tree lstms,”
Transactions of the Association for Computational Linguistics, vol. 5,
pp. 163–177, 2017.

258

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

[45] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 3859–3869.

[46] Z. Yao, F. Xu, P. Yin, H. Sun, and G. Neubig, “Learning structural edits
via incremental tree transformations,” in International Conference on
Learning Representations, 2021.

[47] S. Xue, L. Zhang, A. Li, X.-Y. Li, C. Ruan, and W. Huang, “Appdna:
App behavior profiling via graph-based deep learning,” in IEEE INFO-
COM 2018-IEEE Conference on Computer Communications. IEEE,
2018, pp. 1475–1483.

[48] A. Li, S. Xue, X. Li, L. Zhang, and J. Qian, “Appdna: Profiling app
behavior via deep-learning on function call graphs,” IEEE Transactions
on Emerging Topics in Computing, 2020.

[49] W. Ma, M. Zhao, E. Soremekun, Q. Hu, J. M. Zhang, M. Papadakis,
M. Cordy, X. Xie, and Y. L. Traon, “Graphcode2vec: generic code em-
bedding via lexical and program dependence analyses,” in Proceedings
of the 19th International Conference on Mining Software Repositories,
2022, pp. 524–536.

[50] Z. Li, Q. Zhou, C. Li, K. Xu, and Y. Cao, “Improving BERT with syntax-
aware local attention,” in Findings of the Association for Computational
Linguistics, 2021, pp. 645–653.

[51] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training
code representations with data flow,” in International Conference on
Learning Representations, 2021.

[52] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in Proceed-
ings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2022, pp. 7212–7225.

259

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 17:37:37 UTC from IEEE Xplore. Restrictions apply.

